TI 83/84: Finding The Coordinates Of An Intersection On Your Calculator

• ZOOM Standard.

Enter these equations, then press GRAPH

- Press 2nd, then CALC (above the TRACE key).
- Choose 5: intersect.

<u>If you have a TI – 86</u>: Press GRAPH, More, Math, ISECT If you have a TI – 89: Press GRAPH, F5: Math, 5:Intersection

- The calculator will ask you for the first curve, the second curve, and a guess for the intersection:
 - The calculator will choose the first equation on your list as the first curve -- if you want to choose a different equation, use the up and down arrows.
 - Similarly, the calculator will choose the second equation on the list as the second curve, but you can choose any equation you want.
 - o If you only have two equations graphed, just press ENTER twice for "First curve?" and "Second curve?".
 - The <u>guess</u> should be the x-value as close to the intersection as you can get. You can type in a number, or you can use your left and right arrows to get there.
- After you press ENTER for your guess at the intersection, the calculator will try a lot of numbers near your guess to try and find a point that is as close as possible to an intersection. The better your guess is, the more likely the calculator is to hit the answer exactly. (If it gets it a little bit wrong, it will only be by a millionth of a unit or so -- but it can make your answer look silly.)

one intersection:

the other intersection:

If you get an answer that you think is silly, 2^{nd} CALC the intersection again, but this time type in what you think the exact x-value should be for your guess. On the TI-83/84, the calculator will then (usually) stay on the exact answer.

Practice for Finding Intersections

For each problem:

- graph the functions on your calculator (ZOOM Standard is a good scale).
- sketch the graphs on this paper,
- circle the intersections,
- then find their coordinates by using your calculator.
- Round decimals to two places.
- Some answers are at the bottom of this page!

(1)
$$y = 1 + x \text{ and } y = x^2$$

(2)
$$y = x^2 - 4x$$
 and $y = 2 - x^2$

(20.2, 20.1), (86.0, 20.0-) (1)